Documentation

AlgebraicComplexity.Formulas

inductive Formula (α : Type u) (n : ) :
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        instance zero {α : Type u_1} {n : } [Ring α] :
        Zero (Formula α n)
        Equations
        instance one {α : Type u_1} {n : } [Ring α] :
        One (Formula α n)
        Equations
        instance add {α : Type u_1} {n : } [Ring α] :
        Add (Formula α n)
        Equations
        instance neg {α : Type u_1} {n : } [Ring α] :
        Neg (Formula α n)
        Equations
        instance sub {α : Type u_1} {n : } [Ring α] :
        Sub (Formula α n)
        Equations
        instance mul' {α : Type u_1} {n : } [Ring α] :
        Mul (Formula α n)
        Equations
        def size {α : Type u_1} {n : } (f : Formula α n) :
        Equations
        Instances For
          def depth {α : Type u_1} {n : } (f : Formula α n) :
          Equations
          Instances For
            theorem size_zero_const_or_var {α : Type u_1} {n : } (f : Formula α n) :
            size f = 0(∃ (x : Fin n), f = Formula.Var x) ∃ (c : α), f = C[c]
            theorem size_highest_degree {α : Type u_1} {n : } [CommRing α] [Nontrivial α] (f : Formula α n) :
            def coerce_up {α : Type u_1} {n : } (f : Formula α n) :
            Formula α (n + 1)

            coerce_up f coerces a formula f in n variables to a formula in n + 1 variables.

            Equations
            Instances For
              instance instCoeFormulaHAddNatOfNat {α : Type u_1} {n : } :
              Coe (Formula α n) (Formula α (n + 1))

              This is the Coe typeclass instance for the above coercion. T

              Equations
              noncomputable def incrVar {α : Type u_1} {n : } [CommSemiring α] (p : MvPolynomial (Fin n) α) :
              MvPolynomial (Fin (n + 1)) α

              incrVar p coerces an n variable MvPolynomial to an n + 1 variable MvPolynomial

              Equations
              Instances For
                @[simp]
                theorem incrVar_composes_add {α : Type u_1} {n : } [CommSemiring α] (f g : MvPolynomial (Fin n) α) :

                The three lemmas below show that the incrVar function respects ring operations on the polynomial.

                @[simp]
                theorem incrVar_composes_mult {α : Type u_1} {n : } [CommSemiring α] (f g : MvPolynomial (Fin n) α) :
                @[simp]
                theorem incrVar_composes_neg {α : Type u_1} {n : } [CommRing α] (f : MvPolynomial (Fin n) α) :
                def L (n : ) (α : Type u) [CommRing α] (p : MvPolynomial (Fin n) α) (k : ) :
                Equations
                Instances For
                  theorem complexity_monomial {α : Type u_1} [iCRα : CommRing α] [ntα : Nontrivial α] (n d : ) (hn_pos : n > 0) (hd_pos : d > 0) :
                  ∃ (k : ), L (n + 1) α (MvPolynomial.X 0, ^ d) k k = d - 1